您好, 歡迎來到環(huán)保在線! 登錄| 免費注冊| 產(chǎn)品展廳| 收藏商鋪|
當(dāng)前位置:浙江中耐泵業(yè)有限公司>>技術(shù)文章>>數(shù)解法求離心泵裝置的工況點
離心泵裝置工況點的數(shù)借,其數(shù)學(xué)依據(jù)是如何由泵及管道系統(tǒng)特性曲線方程中解出Q和H值,也即由下列兩個方程式中求解Q、H值。
由式(2-55)、式(2-56)可見:兩個方程式求兩個未知數(shù)是*可能的,關(guān)鍵在于如何來確定泵的H=f(Q)函數(shù)關(guān)系。
現(xiàn)假設(shè)水泵廠樣本中所提供Q-H曲線上的段,可用下列方程的形式來表示,即
H=Hx-hx (2-57)
式中 H——泵的實際揚程;
Hx——泵在Q=0時所產(chǎn)生的虛總揚程;
hx——相應(yīng)于流量為Q時,泵體內(nèi)的虛水頭損失之和,hx=SxQ;
Sx——泵體內(nèi)虛阻耗系數(shù);
m——指數(shù)。對給水管道一般m=2或m=1.84。
現(xiàn)采用m=2,則得
H=Hx-SxQ² (2-58)
圖1 離心泵虛揚程
圖1為式(2-58)的圖示形式。它將泵的段SxQ²視為曲線的一個組成部分,并延長與縱軸相交得Hx值。然后,在段內(nèi)任意選取兩點的坐標(biāo),代入式(2-58),此兩點一定能滿足此方程式,即:
對于一臺泵而言:
因H1、H2、Q1、Q2均為已知值,故可以求出Sx值。將式(2-59)代入式(258)可得:
由式(2-60)可以求出Hx值。表2-2所示為根據(jù)水泵廠生產(chǎn)的SA型及部分舊型號離心泵的資料求得的Hx及Sx值。在求出了Hx及Sx值后,泵的Q-H特殊曲線方程式,就可以寫出為:
H=Hx-SxQ² (2-61)
當(dāng)離心泵工作時,由式2-56)及式(2-61)可得:
也即:
式中Hx、Sx及∑S均為已知值,當(dāng)HST一定時,即可求出泵相應(yīng)工況點的流量和揚程。
上述方程式(2-61)的建立,是把泵的段視為二次拋物線上的一段。采用這種方式來建立Q-H特性曲線方程,稱為拋物線法。但是,實際上并不是每臺泵的段均能滿足此假設(shè)條件的。這樣,在實際采用中就會存在一定的誤差。
擬合離心泵Q-H曲線方程的另一途徑是采用zui小二乘法來進行。設(shè)Q-H曲線可用下列多項式擬合:
則根據(jù)zui小二乘原理求H0、A1、A2、…、Am的線性方程組(亦稱正則方程組)為:
解式(2-63b)式就可求得H0、A1、A2、…、Am。
實際工程中,一般取m=2或m=3。
m=2時 H=Ho+A1Q+A2Q² (2-63c)
m=3時 H=Ho+A1Q+A2Q²+A3Q³ (2-63d)
【例2】現(xiàn)有14SA-10型離心泵一臺,轉(zhuǎn)速n=1450r/min,葉輪直徑D=466mm,其Q-H特性曲線如圖2-27所示。試擬合Q-H特性曲線方程。
14SA-10型離心泵Q-H曲線上的坐標(biāo)值(表2-3)
型號 | 已知各點的坐標(biāo)值 | 待計算值 | ||||||||
Ho | Qo | H1 | Q1 | H2 | Q2 | H3 | Q3 | A1 | A2 | |
14SA-10 | 72 | 0 | 70 | 240 | 65 | 340 | 60 | 380 | 0.0168 | -0.00017 |
【解】由14SA-10型的Q-H特性曲線上,取包括(Qo,Ho)在內(nèi)的任意4點,其值見表2-3.上表中H值單位為m,Q值單位為L/s。求解過程為:
已知的坐標(biāo)值代入式(2-63b)方程,可得:
將上式簡化后,解得:
A1=0.168; A2=-0.000017
將結(jié)果A1、A2值代入式(2-63a),得出該泵的Q-H特性曲線方程為:
H=72+0.168Q-0.00017Q²
將上式與該泵裝置的管道特性曲線方程聯(lián)立,即可求得其工況點的(Q,H)值。
請輸入賬號
請輸入密碼
請輸驗證碼
以上信息由企業(yè)自行提供,信息內(nèi)容的真實性、準(zhǔn)確性和合法性由相關(guān)企業(yè)負(fù)責(zé),環(huán)保在線對此不承擔(dān)任何保證責(zé)任。
溫馨提示:為規(guī)避購買風(fēng)險,建議您在購買產(chǎn)品前務(wù)必確認(rèn)供應(yīng)商資質(zhì)及產(chǎn)品質(zhì)量。