亚洲国产精品二区久久,日本美女后入式午夜视频在线观看,国产污视频在线观看,欧美日韩国产精品中文字幕在线观看

世聯(lián)博研(北京)科技有限公司
初級會員 | 第4年

13466675923

當前位置:世聯(lián)博研(北京)科技有限公司>> aimbiotech 3D培養(yǎng)芯片

aimbiotech 3D培養(yǎng)芯片

參  考  價面議
具體成交價以合同協(xié)議為準

產品型號

品       牌

廠商性質經銷商

所  在  地

更新時間:2023-07-27 22:14:10瀏覽次數(shù):223次

聯(lián)系我時,請告知來自 環(huán)保在線
同類優(yōu)質產品更多>
aimbiotech 3D培養(yǎng)芯片

生物力學相關產品及科研服務

  • 細胞或軟組織納米壓痕測試分析服務
  • Flexcell細胞拉壓流體剪切培養(yǎng)儀
  • 細胞牽引力、內源力測試分析儀
  • 離體或活體在體骨參考點壓痕測量分析儀
  • Optical stretcher單細胞高通量形變儀
  • 經濟型生物材料力學te性測試分析
  • 細胞組織力學te性定量分析光鑷
  • 多功能多材料生物力學te性測試分析系統(tǒng)
  • TGT三維血管軟骨皮膚應力培養(yǎng)系統(tǒng)
  • ITI單層細胞靜水壓力培養(yǎng)系統(tǒng)
  • 血管血流循環(huán)模擬系統(tǒng)
  • VCU顱腦損傷儀
  • 三維微流控芯片系統(tǒng)
  • 皮膚彈性測試分析儀
  • 血管生物反應器
  • 肌腱韌帶生物反應器
  • 軟骨生物反應器
  • 旋轉灌流生物反應器
  • 骨組織灌流表型生物反應器
  • 皮膚生物反應器
  • 凝膠支架種子細胞構建生物組織系統(tǒng)
  • 更多

aimbiotech 3D Cell Culture Chip,三維微流控芯片系統(tǒng)現(xiàn)貨

  • 1、AIM Biotech 3D細胞培養(yǎng)芯片采用三通道設計,中間為3D凝膠通道,兩側為培養(yǎng)基通道,通過負壓吸引快速交換培養(yǎng)基。
    2、芯片透氣性好,可有效進行氣體交換 3采用標準載玻片尺寸(75 mm x 25 mm),兼容相差顯微鏡、熒光顯微鏡和激光共聚焦顯微鏡 4可實現(xiàn)不同類型細胞共培養(yǎng)。
     

    AIM BIOTECH是新加坡一家專注于創(chuàng)新性工具研發(fā)的創(chuàng)業(yè)型公司,其應用領域涵蓋科學研究、藥物開發(fā)和臨床診斷范疇。AIM BIOTEC為科研市場做出的份貢獻是開發(fā)出一款易于操作的、模塊化的平臺,該平臺成功地將3D細胞培養(yǎng)納入了科研人員研究工作體系之中。
    AIM BIOTECH 3D細胞培養(yǎng)芯片概述
    AIM的3D細胞培養(yǎng)芯片透氣性好,而且用戶可以通過選擇不同的水凝膠,在間隔的3D和2D空間進行不同類型細胞的培養(yǎng)。同時可以通過對化學物濃度梯度和流體的調控很好地模擬符合用戶te定需求的微環(huán)境。

  • 訂貨信息(備有):

    1、3D Cell Culture Chips DAX-1 (25/box)

    3D Cell Culture Chips   DAX-1   (25/box)

    2、Holders HOL-1 (10/box)

    Holders   HOL-1   (10/box)

    3、Luer Connectors LUC-1 (36/pack)







     

    3D Cell Culture Chip
    3-channel design : 3D gel region flanked by 2 media channels

    • Microscope slide format 75mm X 25mm
    • Compatible with all polymerisable gels including collagen, fibrinogen, Matrigel, etc. and combinations thereof
    • Gas permeable laminate for effective gas exchange
    • Optically clear and compatible with phase contrast, fluorescence and confocal microscopy
    • Enables monotypic or organotypic co-culture models
    • Enables the control of interstitial flow across the 3D gel region
    • Enables the control of chemical gradients across the 3D gel region
    • Sterile & ready-to-use
    • Designed for rapid media exchange through vacuum aspiration with no risk of over-aspiration
    • Designed for modular expansion with AIM Luer Connectors
    • Fits into AIM Microtiter Plate Holders for easy handling and stacking
    GENERAL PROTOCOLS APPLICATION-SPECIFIC PROTOCOLS

    BUY NOW

    Compatible with all polymerisable gels

    Dedicated 3D regions in AIM chips can be filled with collagen, fibrinogen & other hydrogels or Matrigel? & other extracellular matrixes (ECM) to suit your experimental needs. The hydrogels can be used on their own or in combination with other components to form 3D microenvironments of your choice (stiffness, pH and material compositions). 
    The miniature posts that border the 3D region are designed to set up a vertical gel wall with minimal buildup of resistance during the gel filling process. Cells can be homogeneously dispersed or included as aggregates into the gel.

    Gas exchange

    One of the key advantages of PDMS chips is the material's gas permeability, which enables cells cultured within PDMS devices to 'breathe'. However, PDMS absorbs hydrophobic molecules from solution, making it unsuitable for studies investigating hydrophobic drugs, chemicals or biological molecules.
    AIM chips have overcome the problem by using a gas-permeable plastic to laminate the device. Gas exchange takes place effectively, allowing you to set up normoxic or hypoxic culture environments as needed. 

    Optically clear

    AIM chips are made from polymers with an excellent light transmittance rate of 92%. You can visualise your experiments with phase contrast, epifluorescence, 2-photon and confocal microscopy. 

    Endothelial cell monolayer in 2D channel forming a vertical wall on collagen gel (confocal)

    Angiogenic sprouts in collagen gel (confocal)

    Enables monotypic or organotypic co-culture models

    Different cell types can be cultured together in the same channel or compartmentalised into different channels, allowing users to design models to represent different biological systems. Future AIM chips will have more 3D & 2D channel designs to cater to your needs.

    Enables the control of interstitial flow across the 3D region

    The interstitial flow across the 3D hydrogel can be controlled by setting up a pressure gradient between the flanking channels. This can be achieved by having a larger media volume in one media channel than the other, or by setting shear flow regimes that establish a pressure differential. 

    Enables the control of chemical gradients across the 3D region

    A chemical concentration gradient can be set up across the porous 3D hydrogel easily by using a higher concentration of the chemical in a channel and allowing diffusion to take place.  This feature is very useful for studies where directional cues of effectors are critical, including angiogenesis, cell migration and neurite guidance 

    Sterile & ready-to-use

    AIM chips are individually packaged for your convenience. All chips are sterile and are ready for use right out of the package. AIM chips let you focus on your experiments, rather than on device preparation.

    Designed for rapid media exchange through vacuum aspiration with no risk of over-aspiration

    Due to the small culture volumes of microfluidic devices, culture media typically has to be replenished every day. Vacuum aspiration is used to remove old media before pipetting new media into the device. Media ports in AIM chips are designed with troughs to let users rapidly aspirate old media out without the risk of accidentally aspirating all the media & cells from the device. 

     

    Luer Connectors LUC-1 (36/pack)

    Publications

    Many of the publications listed below were conducted on lab-made devices that form the basis of AIM Biotech chips. Papers that employed the commercial chips are marked with '*'.
    TECHNOLOGY

    Key Publications

    1. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Vickerman V, Blundo J, Chung S, Kamm RD. Lab Chip, 2008, 8, 1468-1477.
    2. Cell migration into scaffold under co-culture conditions in a microfluidic platform. Chung S, Sudo S, Mack PJ, Wan C-R, Vickerman V, Kamm RD. Lab Chip, 2009, 9(2):269-75.
    3. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Shin Y, Han S, Jeon JS, Yamamoto K, Zervantonakis IK, Sudo R, Kamm RD and Chung S. Nature Prot, 7(7):1247-1259, 2012, PMID:
    4. Mechanism of a flow-gated angiogenesis switch: early signaling events at cell-matrix and cell-cell junctions. Vickerman V, Kamm RD. Integr Biol (Camb). 2012 Jun 7. PMID
    5. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD. Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13515-20. Epub 2012 Aug 6. PMID:
    6. Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Aref AR, Huang RY-J, Yu W, Chua K-N, Sun W, Tu T-Y, Sim W-J, Zervantonakis IK, Thiery JP, Kamm RD. Integr Biol (Camb). 2013 Feb;5(2):381-9. doi: 10.1039/c2ib20209c PMID:
    7. Mechanotransduction of fluid stresses governs 3D rheotaxis. Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD. Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2447-52. doi: 10.1073/pnas.1316848111. Epub 2014 Feb 3. PMID:
    8. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Jeon JS, Bersini S, Gilardi M, Dubini G, Charest JL, Moretti M, Kamm RD. Proceedings of the National Academy of Sciences, pp. 201417115, 2014
    9. *Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Jenkins RW, Aref AR, Lizotte PH, Ivanova E, Stinson S, Zhou CW, ... Barbie DA. Cancer Discov. 2017 Nov 3. pii: CD-17-0833. doi: 10.1158/2159-8290.CD-17-0833.
    10. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Campisi M, Shin YJ, Osaki T, Hajal C, Chiono V, Kamm RD. Biomaterials 2018 https://doi.org/10.1016/j.biomaterials.2018.07.014

    Latest Publications

    1. *MBNL1 alternative splicing isoforms play opposing roles in cancer. Tabaglio T, Low DHP, Teo WKL, Goy PA, Cywoniuk P, Wollmann H... Guccione E. Life Science Alliance, Sept 2018 doi:10.26508/lsa.201800157
    2. *3D microfluidic ex vivo culture of organotypic tumor spheroids to model immune checkpoint blockade. Aref AR, Campisi M, Ivanova E, Portell A, Larios D, Piel BP... Jenkins RW. Lab on a Chip, 2018, DOI: 10.1039/C8LC00322J
    3. *Molecular recalibration of PD-1+ antigen-specific T cells from blood and liver. Otano I, Escors D, Schurich A, Singh H, Robertson F, Davidson BR... Maini MK. Molecular Therapy (2018), doi: 10.1016/j.ymthe.2018.08.013.
    4. *Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Ca?adas I, Thummalapalli R, Kim JW, Kitajima S, Jenkins RW, Christensen CL... Barbie DA. Nature Medicine 23 July 2018 doi.org/10.1038/s41591-018-0116-5
    5. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Campisi M, Shin YJ, Osaki T, Hajal C, Chiono V, Kamm RD. Biomaterials 2018 https://doi.org/10.1016/j.biomaterials.2018.07.014
    6. *Assessing Therapeutic Efficacy of MEK Inhibition in a KRASG12C-Driven Mouse Model of Lung Cancer. Li S, Liu S, Deng J, Akbay EA, Hai J, Ambrogio C ... Wong KK. Clinical Cancer Research 2018 doi: 10.1158/1078-0432.CCR-17-3438?
    7. Characterizing the Role of Monocytes in T Cell Cancer Immunotherapy Using a 3D Microfluidic Model. Lee SWL, Adriani G, Ceccarello E, Pavesi A, Tan AT, Bertoletti A, Kamm RD and Wong SC (2018) Front. Immunol. 9:416. doi: 10.3389/ mmu.2018.00416
    8. *Stimuli-Responsive Nanodiamond-Based Biosensor for Enhanced Metastatic Tumor Site Detection. Wang X, Gu MJ, Toh TB, Abdullah NLB, Chow E. SLAS Technol. 2018 Feb;23(1):44-56. doi: 10.1177/2472630317735497. Epub 2017 Oct 11.?
    9. *Protein corona of airborne nanoscale PM2.5 induces aberrant proliferation of human lung fibroblasts based on a 3D organotypic culture. Li Y, Wang PC, Hu CL, Wang K, Chang Q, Liu LJ, Han ZG, Shao Y, Zhai Y, Zuo ZY, Gong ZY, Wu Y. Scientific Reports volume 8, Article number: 1939(2018) doi:10.1038/s41598-018-20445-7
    10. *Functional human 3D microvascular networks on a chip to study the procoagulant effects of ambient fine particulate matter. Li Y, Pi QM, Wang PC, Liu LJ, Han ZG, Shao Y, Zhai Y, Zuo ZY, Gong ZY, Yang X, Yang W. RSC Adv., 2017, 7, 56108–56116
    11. *Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Jenkins RW, Aref AR, Lizotte PH, Ivanova E, Stinson S, Zhou CW, ... Barbie DA. Cancer Discov. 2017 Nov 3. pii: CD-17-0833. doi: 10.1158/2159-8290.CD-17-0833.
    12. *CDK4/6 Inhibition Augments Anti-Tumor Immunity by Enhancing T Cell Activation. Deng J, Wang ES, Jenkins RW, Li S, Dries R, Yates K, ... Wong KK. Cancer Discov. 2017 Nov 3. pii: CD-17-0915. doi: 10.1158/2159-8290.CD-17-0915.?
    13. *?A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors. Pavesi A, Tan AT, Koh S, Chia A, Colombo M, Antonecchia E, Miccolis C, Ceccarello E, Adriani G, Raimondi MT, Kamm RD, Bertoletti A. JCI Insight. 2017 Jun 15;2(12). pii: 89762. doi: 10.1172/jci.insight.89762.
    VASCULAR FUNCTIONS
    CANCER BIOLOGY
    IMMUNOTHERAPY
    NEUROBIOLOGY
    STEM CELL BIOLOGY
    MECHANOBIOLOGY
    OTHER MODELS
    REVIEWS

    1. Vascular Functions

    1.1. Angiogenesis

    1. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Vickerman V, Blundo J, Chung S, Kamm R. Lab Chip, 2008. 8 (9):1468-1477
    2. Surface-Treatment-Induced Three-Dimensional Capillary Morphogenesis in a Microfluidic Platform. Chung S, Sudo R, Zervantonakis IK, Rimchala T, Kamm RD. Advanced Materials, 2009. 21 (47):4863-4867
    3. Transport-mediated angiogenesis in 3D epithelial coculture. Sudo R, Chung S, Zervantonakis IK, Vickerman V, Toshimitsu Y, Griffith LG, Kamm RD. FASEB J., 2009. 23 (7):2155-2164
    4. Determining Cell Fate Transition Probabilities to VEGF/Ang 1 Levels: Relating Computational Modeling to Microfluidic Angiogenesis Studies. Das A, Lauffenburger D, Asada H, Kamm R. Cellular and Molecular Bioengineering, 2010. 3 (4):345-360
    5. Sprouting angiogenesis under a chemical gradient regulated by interactions with an endothelial monolayer in a microfluidic platform. Jeong GS, Han S, Shin Y, Kwon GH, Kamm RD, Lee SH, Chung S. Analytical Chemistry, 2011. 83 (22):8454-8459
    6. In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients. Shin Y, Jeon JS, Han S, Jung GS, Shin S, Lee SH, . . . Chung S. Lab Chip, 2011. 11 (13):2175-2181
    7. Ensemble Analysis of Angiogenic Growth in Three-Dimensional Microfluidic Cell Cultures. Farahat WA, Wood LB, Zervantonakis IK, Schor A, Ong S, Neal D, . . . Asada HH. PLoS ONE, 2012. 7 (5):e37333
    8. Engineering of In Vitro 3D Capillary Beds by Self-Directed Angiogenic Sprouting. Chan JM, Zervantonakis IK, Rimchala T, Polacheck WJ, Whisler J, Kamm RD. PLoS ONE, 2012. 7 (12):e50582
    9. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Shin Y, Han S, Jeon JS, Yamamoto K, Zervantonakis IK, Sudo R, . . . Chung S. Nature Protocols, 2012. 7 (7):1247-1259
    10. In vitro angiogenesis assay for the study of cell-encapsulation therapy. Kim C, Chung S, Yuchun L, Kim M-C, Chan JKY, Asada HH, Kamm RD. Lab Chip, 2012. 12 (16):2942-2950
    11. Complementary effects of ciclopirox olamine, a prolyl hydroxylase inhibitor and sphingosine 1-phosphate on fibroblasts and endothelial cells in driving capillary sprouting. Lim SH, Kim C, Aref AR, Kamm RD, Raghunath M. Integr. Biol., 2013. 5 (12):1474-1484
    ?

    1.2. Anti-Angiogenesis

    1. The stabilization effect of mesenchymal stem cells on the formation of microvascular networks in a microfluidic device. Yamamoto K, Tanimura K, Mabuchi Y, Matsuzaki Y, Chung S, Kamm RD, . . . Sudo R. J. Biomech. Sci. Eng., 2013. 8 (2):114-128
    2. Dll4-containing exosomes induce capillary sprout retraction in a 3D microenvironment. Sharghi-Namini S, Tan E, Ong L-LS, Ge R, Asada HH. Sci. Rep., 2014. 4:4031
    3. A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs. Kim C, Kasuya J, Jeon J, Chung S, Kamm RD. Lab Chip, 2015. 15 (1):301-310
    ?

    1.3. Vasculogenesis

    1. Control of Perfusable Microvascular Network Morphology Using a Multiculture Microfluidic System. Whisler JA, Chen MB, Kamm RD. Tissue Engineering Part C: Methods, 2014. 20 (7):543-552
    2. In Vitro Microvessel Growth and Remodeling within a Three-Dimensional Microfluidic Environment. Park Y, Tu T-Y, Lim S, Clement IM, Yang S, Kamm R. Cellular and Molecular Bioengineering, 2014. 7 (1):15-25
    3. Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Jeon JS, Bersini S, Whisler JA, Chen MB, Dubini G, Charest JL, . . . Kamm RD. Integr. Biol., 2014. 6 (5):555-563
    4. Human Vascular Tissue Models Formed from Human Induced Pluripotent Stem Cell Derived Endothelial Cells. Belair DG, Whisler JA, Valdez J, Velazquez J, Molenda JA, Vickerman V, . . . Murphy WL. Stem Cell Reviews and Reports, 2015. 11 (3):511-525
    5. Elucidation of the Roles of Tumor Integrin β1 in the Extravasation Stage of the Metastasis Cascade. Chen MB, Lamar JM, Li R, Hynes RO, Kamm RD. Cancer Res., 2016. 76 (9):2513-2524
    6. On-chip human microvasculature assay for visualization and quantitation of tumor cell extravasation dynamics. Chen MB, Whisler JA, Fr?se J, Yu C, Shin YJ and Kamm RD. Nat Protoc. 2017 May; 12(5): 865–880.
    7. *Functional human 3D microvascular networks on a chip to study the procoagulant effects of ambient fine particulate matter. Li Y, Pi QM, Wang PC, Liu LJ, Han ZG, Shao Y, Zhai Y, Zuo ZY, Gong ZY, Yang X, Yang W. RSC Adv., 2017, 7, 56108–56116
    ?

    1.4. Flow Response

    1. Mechanism of a flow-gated angiogenesis switch: Early signaling events at cell-matrix and cell-cell junctions. Vickerman V, Kamm RD. Integr. Biol., 2012. 4 (8):863-874
    ?

    1.5. Transendothelial Migration

    1. A versatile assay for monitoring in vivo-like transendothelial migration of neutrophils. Han S, Yan JJ, Shin Y, Jeon JJ, Won J, Jeong HE, . . . Chung S. Lab Chip, 2012. 12 (20):3861-3865
    ?

    1.6. Migration

    1. Vascular Endothelial Growth Factor (VEGF) and Platelet (PF-4) Factor 4 Inputs Modulate Human Microvascular Endothelial Signaling in a Three-Dimensional Matrix Migration Context. Hang T-C, Tedford NC, Reddy RJ, Rimchala T, Wells A, White FM, . . . Lauffenburger DA. Molecular & Cellular Proteomics : MCP, 2013. 12 (12):3704-3718
    2. Cell Invasion Dynamics into a Three Dimensional Extracellular Matrix Fibre Network. Kim M-C, Whisler J, Silberberg YR, Kamm RD, Asada HH. PLoS Comput Biol, 2015. 11 (10):e1004535
    ?

    1.7. Permeability

    1. Constructive remodeling of a synthetic endothelial extracellular matrix. Han S, Shin Y, Jeong HE, Jeon JS, Kamm RD, Huh D, . . . Chung S. Sci. Rep., 2015. 5:18290
    ↑ Back to the top

    2. Cancer Biology

    2.1. Spheroid Dispersion

    1. Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Aref AR, Huang RY-J, Yu W, Chua K-N, Sun W, Tu T-Y, . . . Kamm RD. Integr. Biol., 2013. 5 (2):381-389
    2. Validating Antimetastatic Effects of Natural Products in an Engineered Microfluidic Platform Mimicking Tumor Microenvironment. Niu Y, Bai J, Kamm RD, Wang Y, Wang C. Mol. Pharm., 2014. 11 (7):2022-2029
    3. Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit. Zhu Z, Aref AR, Cohoon TJ, Barbie TU, Imamura Y, Yang S, . . . Barbie DA. Cancer Discov., 2014. 4 (4):452-465
    4. Targeting an IKBKE cytokine network impairs triple-negative breast cancer growth. Barbie TU, Alexe G, Aref AR, Li S, Zhu Z, Zhang X, . . . Gillanders WE. The Journal of Clinical Investigation, 2014. 124 (12):5411-5423
    5. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Tan L, Wang J, Tanizaki J, Huang Z, Aref AR, Rusan M, . . . Gray NS. Proc. Natl. Acad. Sci. USA, 2014. 111 (45):E4869-E4877
    6. Identification of drugs as single agents or in combination to prevent carcinoma dissemination in a microfluidic 3D environment. Bai J, Tu T-Y, Kim C, Thiery JP, Kamm RD. Oncotarget, 2015. 6 (34):36603-36614
    7. Contact-dependent carcinoma aggregate dispersion by M2a macrophages via ICAM-1 and β2 integrin interactions. Bai J, Adriani G, Dang T-M, Tu T-Y, Penny H-XL, Wong S-C, . . . Thiery J-P. Oncotarget, 2015. 6 (28):25295-25307
    8. *Stimuli-Responsive Nanodiamond-Based Biosensor for Enhanced Metastatic Tumor Site Detection. Wang X, Gu MJ, Toh TB, Abdullah NLB, Chow E. SLAS Technol. 2018 Feb;23(1):44-56. doi: 10.1177/2472630317735497. Epub 2017 Oct 11.
    ?

    2.2. Extravasation

    1. In Vitro Model of Tumor Cell Extravasation. Jeon JS, Zervantonakis IK, Chung S, Kamm RD, Charest JL. PLoS ONE, 2013. 8 (2):e56910
    2. Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Chen MB, Whisler JA, Jeon JS, Kamm RD. Integr. Biol., 2013. 5 (10):1262-1271
    3. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Bersini S, Jeon JS, Dubini G, Arrigoni C, Chung S, Charest JL, . . . Kamm RD. Biomaterials, 2014. 35 (8):2454-2461
    4. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Jeon JS, Bersini S, Gilardi M, Dubini G, Charest JL, Moretti M, Kamm RD. Proc. Natl. Acad. Sci. USA, 2015. 112 (1):214-219
    5. Neutrophils suppress intraluminal NK-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells. Spiegel A, Brooks MW, Houshyar S, Reinhardt F, Ardolino M, Fessler E, . . . Weinberg RA. Cancer Discov., 2016. 6 (6):630-649
    6. Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma. Penny HL, Sieow JL, Adriani G, Yeap WH, See Chi Ee P, San Luis B, . . . Wong SC. OncoImmunology, 2016. 5 (8):e1191731
    7. ?On-chip human microvasculature assay for visualization and quantitation of tumor cell extravasation dynamics. Chen MB, Whisler JA, Fr?se J, Yu C, Shin YJ and Kamm RD. Nat Protoc. 2017 May; 12(5): 865–880.
    ?

    2.3. Intravasation

    1. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD. Proc. Natl. Acad. Sci. USA, 2012. 109 (34):13515-13520
    ?

    2.4. Flow Response

    1. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Polacheck WJ, Charest JL, Kamm RD. Proc. Natl. Acad. Sci. USA, 2011. 108 (27):11115-20
    2. Mechanotransduction of fluid stresses governs 3D cell migration. Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD. Proc. Natl. Acad. Sci. USA, 2014. 111 (7):2447-2452
    ?

    2.5. Invasion and Migration

    1. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Chung S, Sudo R, Mack PJ, Wan CR, Vickerman V, Kamm RD. Lab Chip, 2009. 9 (2):269-275
    2. Concentration gradients in microfluidic 3D matrix cell culture systems. Zervantonakis I, Chung S, Sudo R, Zhang M, Charest J, Kamm R. International Journal of Micro-Nano Scale Transport, 2010. 1 (1):27-36
    3. A novel microfluidic platform for high-resolution imaging of a three-dimensional cell culture under a controlled hypoxic environment. Funamoto K, Zervantonakis IK, Liu Y, Ochs CJ, Kim C, Kamm RD. Lab Chip, 2012. 12 (22):4855-4863
    4. Hydrogels: Extracellular Matrix Heterogeneity Regulates Three-Dimensional Morphologies of Breast Adenocarcinoma Cell Invasion. Shin Y, Kim H, Han S, Won J, Jeong HE, Lee E-S, . . . Chung S. Advanced Healthcare Materials, 2013. 2 (6):920-920
    5. A three-dimensional microfluidic tumor cell migration assay to screen the effect of anti-migratory drugs and interstitial flow. Kalchman J, Fujioka S, Chung S, Kikkawa Y, Mitaka T, Kamm RD, . . . Sudo R. Microfluid. Nanofluid., 2013. 14 (6):969-981
    6. Breast Cancer Cell Invasion into a Three Dimensional Tumor-Stroma Microenvironment. Truong D, Puleo J, Llave A, Mouneimne G, Kamm RD, Nikkhah M. Sci. Rep., 2016. 6:34094
    7. Macrophage-secreted TNFα and TGFβ1 Influence Migration Speed and Persistence of Cancer Cells in 3D Tissue Culture via Independent Pathways. Li R, Hebert JD, Lee TA, Xing H, Boussommier-Calleja A, Hynes RO, . . . Kamm RD. Cancer Res., 2016. 77 (2):279-290
    8. *MBNL1 alternative splicing isoforms play opposing roles in cancer. Tabaglio T, Low DHP, Teo WKL, Goy PA, Cywoniuk P, Wollmann H... Guccione E. Life Science Alliance, Sept 2018 doi:10.26508/lsa.201800157
    ?

    2.6. Testing New Therapeutic Approaches

    1. Engineering a 3D microfluidic culture platform for tumor-treating field application. Pavesi A, Adriani G, Tay A, Warkiani ME, Yeap WH, Wong SC, Kamm RD. Sci. Rep., 2016. 6:26584
    2. *Assessing Therapeutic Efficacy of MEK Inhibition in a KRASG12C-Driven Mouse Model of Lung Cancer. Li S, Liu S, Deng J, Akbay EA, Hai J, Ambrogio C ... Wong KK. Clinical Cancer Research 2018 doi: 10.1158/1078-0432.CCR-17-3438
    ↑ Back to the top

    3. Immunotherapy

    1. *?A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors. Pavesi A, Tan AT, Koh S, Chia A, Colombo M, Antonecchia E, Miccolis C, Ceccarello E, Adriani G, Raimondi MT, Kamm RD, Bertoletti A. JCI Insight. 2017 Jun 15;2(12). pii: 89762. doi: 10.1172/jci.insight.89762.
    2. *Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Jenkins RW, Aref AR, Lizotte PH, Ivanova E, Stinson S, Zhou CW, ... Barbie DA. Cancer Discov. 2017 Nov 3. pii: CD-17-0833. doi: 10.1158/2159-8290.CD-17-0833.
    3. *CDK4/6 Inhibition Augments Anti-Tumor Immunity by Enhancing T Cell Activation. Deng J, Wang ES, Jenkins RW, Li S, Dries R, Yates K, ... Wong KK. Cancer Discov. 2017 Nov 3. pii: CD-17-0915. doi: 10.1158/2159-8290.CD-17-0915.
    4. Characterizing the Role of Monocytes in T Cell Cancer Immunotherapy Using a 3D Microfluidic Model. Lee SWL, Adriani G, Ceccarello E, Pavesi A, Tan AT, Bertoletti A, Kamm RD and Wong SC (2018) Front. Immunol. 9:416. doi: 10.3389/ mmu.2018.00416
    5. *Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Ca?adas I, Thummalapalli R, Kim JW, Kitajima S, Jenkins RW, Christensen CL... Barbie DA. Nature Medicine 23 July 2018 doi.org/10.1038/s41591-018-0116-5
    6. *Molecular recalibration of PD-1+ antigen-specific T cells from blood and liver. Otano I, Escors D, Schurich A, Singh H, Robertson F, Davidson BR... Maini MK. Molecular Therapy (2018), doi: 10.1016/j.ymthe.2018.08.013.
    7. *3D microfluidic ex vivo culture of organotypic tumor spheroids to model immune checkpoint blockade. Aref AR, Campisi M, Ivanova E, Portell A, Larios D, Piel BP... Jenkins RW. Lab on a Chip, 2018, DOI: 10.1039/C8LC00322J
    ↑ Back to the top

    4. Neurobiology

    1. A high-throughput microfluidic assay to study neurite response to growth factor gradients. Kothapalli CR, van Veen E, de Valence S, Chung S, Zervantonakis IK, Gertler FB, Kamm RD. Lab Chip, 2011. 11 (3):497-507
    2. A microfluidic device to investigate axon targeting by limited numbers of purified cortical projection neuron subtypes. Tharin S, Kothapalli CR, Ozdinler PH, Pasquina L, Chung S, Varner J, . . . Macklis JD. Integr. Biol., 2012. 4 (11):1398-1405
    3. Three-dimensional extracellular matrix-mediated neural stem cell differentiation in a microfluidic device. Han S, Yang K, Shin Y, Lee JS, Kamm RD, Chung S, Cho SW. Lab Chip, 2012. 12 (13):2305-2308
    4. A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as blood-brain barrier. Adriani G, Ma DL, Pavesi A, Kamm R, Goh ELK. Lab Chip, 2016. 17 (3):448-459
    5. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Campisi M, Shin YJ, Osaki T, Hajal C, Chiono V, Kamm RD. Biomaterials 2018 https://doi.org/10.1016/j.biomaterials.2018.07.014

    ↑ Back to the top

    5. Stem Cell Biology

    5.1. Differentiation of Embryonic Stem Cells

    1. Differentiation of embryonic stem cells into cardiomyocytes in a compliant microfluidic system. Wan CR, Chung S, Kamm RD. Ann. Biomed. Eng., 2011. 39 (6):1840-1847
    2. Simultaneous or Sequential Orthogonal Gradient Formation in a 3D Cell Culture Microfluidic Platform. Uzel SGM, Amadi OC, Pearl TM, Lee RT, So PTC, Kamm RD. Small, 2016. 12 (5):612-622
    ?

    5.2. Electrical and Mechanical Stimulation of Mesenchymal Stem Cells

    1. Controlled electromechanical cell stimulation on-a-chip. Pavesi A, Adriani G, Rasponi M, Zervantonakis IK, Fiore GB, Kamm RD. Sci. Rep., 2015. 5:11800
    ↑ Back to the top

    6. ?Mechanobiology

    6.1. Mechanical stimulation of Cardiac Fibroblasts

    1. On-chip assessment of human primary cardiac fibroblasts proliferative responses to uniaxial cyclic mechanical strain. Ugolini GS, Rasponi M, Pavesi A, Santoro R, Kamm R, Fiore GB, . . . Soncini M. Biotechnol. Bioeng., 2016. 113 (4):859-869
    ?

    6.2. Optically Excitable Motor Units

    1. Microfluidic device for the formation of optically excitable, three-dimensional, compartmentalized motor units. Uzel SGM, Platt RJ, Subramanian V, Pearl TM, Rowlands CJ, Chan V, . . . Kamm RD. Science Advances, 2016. 2 (8)
    ↑ Back to the top

    ?7. Other Models

    7.1. Environmental Assessment

    1. *Functional human 3D microvascular networks on a chip to study the procoagulant effects of ambient fine particulate matter. Li Y, Pi QM, Wang PC, Liu LJ, Han ZG, Shao Y, Zhai Y, Zuo ZY, Gong ZY, Yang X, Yang W. RSC Adv., 2017, 7, 56108–56116
    2. *Protein corona of airborne nanoscale PM2.5 induces aberrant proliferation of human lung fibroblasts based on a 3D organotypic culture. Li Y, Wang PC, Hu CL, Wang K, Chang Q, Liu LJ, Han ZG, Shao Y, Zhai Y, Zuo ZY, Gong ZY, Wu Y. Scientific Reports volume 8, Article number: 1939(2018) doi:10.1038/s41598-018-20445-7
    ↑ Back to the top

    8. Reviews

    1. Microfluidic Platforms for Studies of Angiogenesis, Cell Migration, and Cell–Cell Interactions. Chung S, Sudo R, Vickerman V, Zervantonakis IK, Kamm RD. Ann. Biomed. Eng., 2010. 38 (3):1164-1177
    2. Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments. Zervantonakis IK, Kothapalli CR, Chung S, Sudo R, Kamm RD. Biomicrofluidics, 2011. 5 (1)
    3. Microfluidic models of vascular functions. Wong KHK, Chan JM, Kamm RD, Tien J. 2012. 14:205-230
    4. Tumor cell migration in complex microenvironments. Polacheck WJ, Zervantonakis IK, Kamm RD. Cell. Mol. Life Sci., 2013. 70 (8):1335-1356
    5. Microfluidic platforms for mechanobiology. Polacheck WJ, Li R, Uzel SGM, Kamm RD. Lab Chip, 2013. 13 (12):2252-2267
    6. Creating living machines. Kamm RD, Bashir R. Ann. Biomed. Eng., 2014. 42 (2):445-459
    7. In vitro models of the metastatic cascade: from local invasion to extravasation. Bersini S, Jeon JS, Moretti M, Kamm RD. Drug Discov. Today, 2014. 19 (6):735-742
    8. Microfabrication and microfluidics for muscle tissue models. Uzel SGM, Pavesi A, Kamm RD. Progress in Biophysics and Molecular Biology, 2014. 115 (2–3):279-293
    9. Single-Cell Migration in Complex Microenvironments: Mechanics and Signaling Dynamics. Mak M, Spill F, Kamm RD, Zaman MH. J. Biomech. Eng., 2016. 138 (2):021004-021004-8
    10. Impact of the physical microenvironment on tumor progression and metastasis. Spill F, Reynolds DS, Kamm RD, Zaman MH. Curr. Opin. Biotechnol., 2016. 40:41-48
    11. Microfluidics: A New Tool for Modeling Cancer-Immune Interactions. Boussommier-Calleja A, Li R, Chen MB, Wong SC, Kamm RD. Trends in Cancer. 2 (1):6-19
    12. Microfluidic models for adoptive cell-mediated cancer immunotherapies. Adriani G, Pavesi A, Tan AT, Bertoletti A, Thiery JP, Kamm RD. Drug Discov. Today, 2016. 21 (9):1472-1478
    13. M2a macrophages induce contact-dependent dispersion of carcinoma cell aggregates. Adriani G, Bai J, Wong SC, Kamm RD, Thiery JP. Macrophage, 2016. 3:e1222

     

會員登錄

×

請輸入賬號

請輸入密碼

=

請輸驗證碼

收藏該商鋪

X
該信息已收藏!
標簽:
保存成功

(空格分隔,最多3個,單個標簽最多10個字符)

常用:

提示

X
您的留言已提交成功!我們將在第一時間回復您~
撥打電話
在線留言
国产福利视频一区二区三区-日韩人妻中文视频精品| 亚洲综合av一区二区三区-高潮又爽又黄无遮挡激情视频| 中文字幕日本在线资源-国产+成+人+亚洲欧洲自线| 久久久国产精品电影片-精品孕妇人妻一区二区三区| 日本中文字幕永久在线人妻蜜臀-欧美一区二区的网站在线观看| 精品少妇一区二区18-一区二区三区日韩在线播放| 韩漫一区二区在线观看-精品国产免费未成女一区二区三区| 亚洲黑人欧美一区二区三区-亚洲一区二区三区免费视频播放| 日韩综合精品一区二区-丝袜美腿熟女人妻经典三级| 国产精品v欧美精品v日韩精品-国产欧美日韩精品区一区二污污污| 日本中文字幕永久在线人妻蜜臀-欧美一区二区的网站在线观看| 亚洲永久免费在线观看-亚洲欧美导航一区二区导航| av中文字幕男人天堂-懂色av一区二区三区在线观看| 欧洲精品一区二区三区中文字幕-91久久国产综合久久蜜月精品| 久久99国产综合精品女人-日韩一区二区三区在线不卡| 中文字幕亚洲中文字幕-丰满老妇伦子交尾在线播放| 五月婷婷免费观看视频-男人操女人下面视频在线免费看| 国产精品久久99精品毛片-国产四季高清一区二区三区| 国产高清av免费在线观看-黄片毛片大全一区二区三区| 亚洲欧美激情自拍色图-国产亚洲精品sese在线播放| 国产欧美成人精品第一区-日本黄色精品一区二区| 日本高清二区视频久二区-大香蕉在线视频大香蕉在线视频| 国产精品一区二区在线免费-久久精品国产亚洲av热明星| 欧美视频在线观看国产专区-亚洲91精品在线观看| 欧美精品午夜一二三区-a屁视频一区二区三区四区| 国产精品久久99精品毛片-国产四季高清一区二区三区| 亚洲区欧美区在线视频-亚洲碰碰人人AV熟女天堂| 国产在线一区二区三区欧美-久久偷拍精品视频久久| 国产精品电影在线一区-亚洲国产大片一区二区官网| 欧洲精品一区二区三区中文字幕-91久久国产综合久久蜜月精品| 人妻日韩精品中文字幕图片-麻豆极度性感诱人在线露脸| 久久影视av一区二区-人妻激情乱偷一区二区三区| 亚洲午夜久久久精品影院-性感美女在线观看网站国产| 7m视频7m精品视频网站-亚洲综合香蕉视频在线| 可以免费看污污视频的网站-日韩欧美不卡视频在线观看| 在线成色中文综合网站-国产二区精品视频在线观看| 91麻豆免费在线视频-欧美中文天堂在线观看| 国语自产偷拍精品视频偷拍-国产伊人这里只有精品视频| 精品老熟妇一区二区三区-日韩丰满一区二区三区| av一区免费在线观看-中文字幕日韩国产精品视频| 亚洲黑人欧美一区二区三区-亚洲一区二区三区免费视频播放|