亚洲国产精品二区久久,日本美女后入式午夜视频在线观看,国产污视频在线观看,欧美日韩国产精品中文字幕在线观看

行業(yè)產(chǎn)品

  • 行業(yè)產(chǎn)品

八帆儀器設(shè)備有限公司


當(dāng)前位置:八帆儀器設(shè)備有限公司>>>>SOI芯片訂制

SOI芯片訂制

返回列表頁
參  考  價(jià)面議
具體成交價(jià)以合同協(xié)議為準(zhǔn)

產(chǎn)品型號(hào)

品       牌

廠商性質(zhì)其他

所  在  地

聯(lián)系方式:查看聯(lián)系方式

更新時(shí)間:2024-02-18 13:41:12瀏覽次數(shù):131次

聯(lián)系我時(shí),請(qǐng)告知來自 環(huán)保在線


    暫無信息


    暫無信息

經(jīng)營模式:其他

商鋪產(chǎn)品:43條

所在地區(qū):

產(chǎn)品簡介

SOI芯片訂制

詳細(xì)介紹

What is Nano SOI?

Rapid fabrication service for prototyping silicon photonic integrated circuits. Includes passive and thermo-optic devices.
Turnaround time from design submission to delivery as short as three weeks.
Options for cladding oxide, metallization, and deep trenches for edge-coupling.
Proven optical performance and low propagation loss.

Introduction

The NanoSOI fabrication process provides an avenue to fabricate photonic integrated circuits (PICs). The foundation of the process is the silicon patterning step, which is performed on silicon-on-insulator (SOI) substrates. Superior line-edge roughness and high throughput are guaranteed with the use of a state-of-the-art 100 keV electron-beam lithography system. Our anisotropic plasma etch process provides smooth sidewalls for reduced scattering loss in photonic devices. Optional process steps such as oxide cladding deposition, metallization and deep trench etching can be performed afterward to create passive and active photonic devices with grating couplers or edge couplers. In addition to these standard processes, we also have custom options available such as selective oxide removal, or partial etch depths.

 There are two options for accessing the NanoSOI fabrication process. Multi-project wafer (MPW) runs are scheduled once every two months. Standard processes and immediate pricing are available for these runs. Dedicated runs are for projects requiring custom options such as selective oxide release. Timelines for these runs are flexible, and quotations are customized for each run.


Submission Process

Submission of a design to the NanoSOI process is done online. Design files are provided to us in Calma Graphics Data System II (GDSII) format, with database units of 1 nanometre. Designs are submitted online using the NanoSOI Design Center, which can be accessed by choosing “Submit A Design" in the navigation bar above. The latest design rules, layout tutorials, and details about the fabrication process are all located at the NanoSOI Design Center. Pricing for multi-project wafer runs is also available online through the Design Center.


Fabrication Details

Our fabrication process, including all of our standard options, is outlined below. Jump to any process step using the sidebar on the right.

Silicon Device Layer

 Our silicon patterning process involves the definition of nano-scale features in silicon-on-insulator (SOI) using electron beam lithography (EBL) and reactive ion etching (RIE) processes. The substrate is a 220 nm silicon device layer with a 2 µm buried oxide layer and 675 µm handle wafer. The patterning process begins by cleaning and spin-coating a material that is sensitive to electron beam exposure. A device pattern is defined into this material using 100 keV EBL. Once the material has been chemically developed, an anisotropic ICP-RIE etching process is performed on the substrate to transfer the pattern into the underlying silicon layer. The etch is performed until there is no remaining silicon and the underlying buffer oxide layer is exposed. Once the silicon patterning step has been completed, several standard options become available to add extra functionality to the device, including oxide deposition to protect and isolate silicon devices, metallization to give the devices electrical functionality, and deep trenches to provide a smooth interface for fiber edge-coupling. Custom options include selective oxide release to create free-standing silicon structures for mechanical applications.

Waveguide Components

 Y Splitter (50/50) on 220 nm SOI

Grating Couplers

 Sub-wavelength grating coupler patterned on 300 nm SOI

Photonics Crystals

 Photonic crystal strip waveguide patterned on 300 nm SOI

Propagation Loss measurements

Applied Nanotools periodically measures the optical propagation loss using test structures. The test structure is a straight 500 nm-wide silicon strip waveguide with a 2.2 μm-thick cladding oxide. Cut-back loss measurements are performed by varying the length of the waveguide from 0 to 3 centimetres, measuring the total insertion loss of each device and performing a linear fit on loss vs. waveguide length. Both straight and curved waveguide segments are used. The average propagation loss for fully-etched 220 nm SOI devices is tabulated below:

Polarization Straight Waveguide Loss Curved Waveguide Loss
TE 1.5 dB/cm 3.8 dB/cm
TM 2.4 dB/cm 3.0 dB/cm

These results are averaged over two sets of test arrays. Each set was separated by 9 mm. Detailed measurement data, including spectral scans, can be provided by request.


Oxide Deposition

 If the silicon devices require isolation from the outside environment, silicon dioxide can be deposited onto the device using a chemical vapour deposition (CVD) process. Our standard oxide deposition thickness is is 2.2 µm, which is sufficient for most thermal and optical applications. The oxide deposition process can be combined with our tri-layer heater metallization process to fabricate active photonic devices that can be controlled with temperature. Custom oxide thicknesses up to 3 µm can be requested.

Metalization

Metallization adds electrical functionality to your device. ANT has two metallization processes, which are either performed directly on the silicon features or on top of the oxide cladding (if deposited in the previous step). The former enables the direct application of a voltage/current to a silicon device, and the latter enables low-loss thermo-optic photonic devices.

Derect Metalization

the purpose of direct metallization is to create bonding and/or probing pads and to pattern coarse electronic pathways directly on the silicon devices. This metallization process uses photolithography to define the metal areas (minimum 10 µm feature size) to within a 2 µm alignment precision to the underlying silicon layer. Metals are deposited on the substrate using electron-beam evaporation and the thickness can be controlled to an accuracy of ±5 % of the overall thickness. Oxide cladding cannot be deposited on the device before direct metallization is performed. The standard metal is Au. Aluminum or other custom metals can be used upon request. The choice of materials for the pads/traces are as follows:
Metal Thinkness
Gold (with 4 nm Cr adhesion layer) 100 nm

Tri-layer metalization

 * Protective oxide layer not shown.
The purpose of tri-layer metallization is to create compact heater devices using a high-resistance metal and interface with the heater devices using a low-resistance routing layer. A third layer consisting of silicon dioxide is used to protect the heaters from oxidation damage. The oxide is etched away over the aluminum pads to expose them for probing or wire bonding. The use of two metals increases the electrical efficiency of the devices, as the majority of the heat generation can be targeted to a specific area of the chip with the Ti/W. The two metal layers are also patterned using photolithography. The heater layer uses a titanium-tungsten alloy to implement the high-resistance heater devices. The routing layer, which can consist of wider electrical traces or bonding/probing pads, is made out of a titanium-tungsten/aluminum bilayer. Using a bilayer for the routing layer ensures good electrical contact between the routing layer and the heater layer with low contact resistance. The bilayer also ensures that the routing layer is uniform layer with no height changes. A blanket layer of oxide is then deposited on the chips and the probing pads are exposed using the oxide window layer. Below are the specifications of the tri-layer
Metal Thinkness
TiW Alloy Heater Layer Thickness: 200 nm Bulk Resistivity: 0.61 μΩ-m Sheet Resistance: 3.07 Ω/sq
TTiW/Al Bilayer Routing Layer Thickness: 200 nm Ti/W + 500 nm Al Bulk Resistivity: 0.04 μΩ-m Sheet Resistance: 0.08 Ω/sq
Silicon Dioxide Protective Layer Thickness: 300 nm Bulk Resistivity: N/A Sheet Resistance: N/A

Deep Trench Etch

With our deep-etch process, trenches can be made along the perimeter of the chip to allow for a fiber optic cable to couple light directly into on-chip devices such as nano-tapered waveguides and sub-wavelength gratings. The 300 μm-wide trench is patterned around an 8.78 x 8.78 mm enclosed area, centered on the submitted GDSII design. A deep-etch process is then used to etch through the cladding, buried oxide, and through the underlying silicon substrate. The final result is a 8.78 x 8.78 mm substrate with a smooth interface on all four sides for fiber edge-coupling.

其他推薦產(chǎn)品更多>>

感興趣的產(chǎn)品PRODUCTS YOU ARE INTERESTED IN

環(huán)保在線 設(shè)計(jì)制作,未經(jīng)允許翻錄必究 .? ? ? Copyright(C)?2021 http://www.kytsldc.cn,All rights reserved.

以上信息由企業(yè)自行提供,信息內(nèi)容的真實(shí)性、準(zhǔn)確性和合法性由相關(guān)企業(yè)負(fù)責(zé),環(huán)保在線對(duì)此不承擔(dān)任何保證責(zé)任。 溫馨提示:為規(guī)避購買風(fēng)險(xiǎn),建議您在購買產(chǎn)品前務(wù)必確認(rèn)供應(yīng)商資質(zhì)及產(chǎn)品質(zhì)量。

會(huì)員登錄

×

請(qǐng)輸入賬號(hào)

請(qǐng)輸入密碼

=

請(qǐng)輸驗(yàn)證碼

收藏該商鋪

請(qǐng) 登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~
韩国三级a视频哪里看| 日韩激情视频在线看免费| 天堂无码不卡av| 丁香社区五月在线视频久| 亚洲一区二区女同性恋免费看| 亚洲欧美中文字幕第二十| 有关日本黄色录像的视频| 无码中文字幕免费一区二区三区| 大香蕉操逼小视频| 国产一国产一级毛片无码视频百度| 精品日韩欧美精品日韩| 亚洲高清中文字幕一区二区三区| 亚洲国际精品一区二区| 亚洲欧美日韩精品一区二区| 男人吃奶大鸡巴操逼视频| 色噜噜AV亚洲色一区二区| 日韩aaa成人免费观看| 快日我啊好爽日我逼| 日韩毛片一区视频免费在线观看| 国产高清一区二区三区四区色| 97超视频免费在线观看| 娇嫩的被两根粗大的np| av中文字幕一区二区精品久久| 91麻豆精品福利在线观看| 夜夜嗨av少妇一二三区| 中国熟女色av夜夜嗨| 黑人大吊又操又添| 99热这里只有精品98| 鸡巴操美女小穴羞羞视频| 大鸡吧插美女嫩逼| 欧美日韩精品视频在线第一区| 色综合色狠狠天天综合色| 操逼操的翻白眼视频| 欧美高清一二三区| 日韩午夜精品中文字幕| 日韩亚洲AV无码一区二区不卡| 又大黄又硬又爽免费视频| 热精品韩国毛久久久久久| 香蕉国产精品偷在线| 大鸡巴狂插嫩逼视频| 精品日本一区二区三区视频播放|